
Self Extended Module as Toplevel Object
(Pollution Free Object) Feature #6609

Defining methods on toplevel pollutes Object class and thus all objects. This is bad practice, so why allow it? In
addition, toplevel object does not provide usual methods expected of a namespace.

CURRENTLY PROPOSAL

self.class #=> Object

def foo; end
Object.private_instance_methods(false) #=> [:foo]

define_method(:foo){}
NoMethodError: undefined method ‘define_method’ ...

Foo = 10
const_defined?(:Foo)
NoMethodError: undefined method `const_defined?' ...

Many more examples, almost all Module methods can’t be used.

Solve both issues in one go by making toplevel object a self
extended module instead of current instance of Object which
delegates (only a little) to Object class.

module Main
 extend self
 # toplevel evaluates as if here
end

self.class #=> Module

Module is real namespace.

ISSUES

● Toplevel methods pollute all objects, which is useless and
can potentially cause bugs with meta-programming. e.g.
private_methods.include?().

● Does not act like other namespaces. Can’t define dynamic
methods, lookup constants, use callbacks, etc.

BENEFITS

● Toplevel freedom! Create DSLs which can be evaluated at
toplevel without concern over use of `def`.

● Access to Main from anywhere is easy. `Main.binding`
instead of `TOPLEVEL_BINDING`.

● No one can use bad practice any more.

