Ruby master - Bug #14972

Net::HTTP inconsistently raises EOFError when peer closes the connection
08/07/2018 07:20 AM - joshc (Josh C)

Status: Open

Priority: Normal

Assignee:

Target version: 2.7

ruby -v: ruby 2.4.3p205 (2017-12-14 revision Backport: 2.3: DONTNEED, 2.4: DONTNEED, 2.5:
61247) [x86_64-darwini15] DONTNEED

Description

If chunked transfer encoding is used, and the peer closes the connection while the caller is reading data, then the
Net::HTTP::Response#read_body method will raise EOFError. If chunked transfer encoding is not used (and an explicit
Content-Length is used instead), the read_body method swallows the EOFError exception. | would expect read_body to raise
EOFError if it reads fewer than Content-Length bytes.

The current behavior is explained by the ignore_eof parameter in
https://github.com/ruby/ruby/blob/v2_4_3/lib/net/http/response.rb#L284-L.301. However, RFC 7230 section 3.3.3
https://tools.ietf.org/html/rfc7230#section-3.3.3 says:

5. If a valid Content-Length header field is present without
Transfer-Encoding, its decimal value defines the expected message
body length in octets. If the sender closes the connection or
the recipient times out before the indicated number of octets are
received, the recipient MUST consider the message to be
incomplete and close the connection.

As it is now, if chunked encoding is not used, then the caller is unaware when the response body is truncated. In order to detect it,
the caller must count the number of bytes read until Content-Length is reached. However, that means you can't use ruby's automatic
decompression, because Content-Length is the number of compressed bytes, while read_body yields chunks of uncompressed data.

Here's sample code to reproduce. Run the following http server. Note chunked is currently false, but can be toggled.
require 'webrick'

server = WEBrick::HTTPServer.new :Port => 8000
trap '"INT' do

server.shutdown
end

toggle this
chunked = false

server.mount_proc '/' do |req, res|
res.status = 200
res['Content-Type'] = 'text/plain'

str = "0123456789" * 10000
res.body = str
if chunked
res.chunked = true
else
res['Content-Length'] = str.length
end
end

server.start
Run the following http client code. In order to simulate a closed connection, the block raises EOFError.

require 'net/http'
require 'uri'

11/18/2019 1/5

https://github.com/ruby/ruby/blob/v2_4_3/lib/net/http/response.rb#L284-L301
https://tools.ietf.org/html/rfc7230#section-3.3.3

uri = URI("http://localhost:8000/")
Net::HTTP.start (uri.host, uri.port) do |http]
http.request_get (uri.path) do |response]|
response.read_body do |chunk]|

puts "Read #{chunk.length} bytes"
raise EOFError.new ("whoops")
end
end
end

puts "EOF was silently caught"

When chunked encoding is used, the exception is properly raised. | believe ruby is retrying the request because GET is idempotent:

$ ruby —--version

ruby 2.4.3p205 (2017-12-14 revision 61247)
$ ruby client.rb

Content-Length:

Transfer-Encoding: chunked
Read 16377 bytes
Content-Length:
Transfer-Encoding: chunked

Read 16377 bytes

[x86_64-darwinl5]

client.rb:11:in “block (3 levels) in <main>': whoops (EOFError)

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/protocol.rb:429:in “call_block'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/protocol.rb:420:in ~<<'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/protocol.rb:122:in "read'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http/response.rb:322:in "read_chun
ked'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http/response.rb:286:in "block in
read_body_0"

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http/response.rb:278:in " inflater'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http/response.rb:283:in " read_body
O'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http/response.rb:204:in " read_body
T

from client.rb:9:in “block (2 levels) in <main>'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http.rb:1455:in “block in transpor
t_request'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http/response.rb:165:in "“reading_b
ody'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http.rb:1454:in "transport_request
T

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http.rb:1416:in "request'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http.rb:1317:in "“request_get'

from client.rb:6:in “block in <main>'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http.rb:877:in " start'

from /usr/local/opt/rbenv/versions/2.4.3/1ib/ruby/2.4.0/net/http.rb:608:in "start'

from client.rb:5:in "~ <main>'

When chunked encoding is not used, the exception is not raised:

ruby client.rb
Content-Length: 100000
Transfer-Encoding:

Read 0 bytes

EOF was silently caught

| verified the behavior exists as far back as ruby 1.9.3p551. It was introduced in
https://github.com/ruby/ruby/commit/cdc7602379c9d911983db2c044d69ac4 17869266#diff-8c2ab8e0fb4f052e1d95ab6334e192¢c1R9

49.

History

#1 - 08/07/2018 07:52 AM - joshc (Josh C)

- Description updated

11/18/2019

2/5

https://github.com/ruby/ruby/commit/cdc7602379c9d911983db2c044d69ac417869266#diff-8c2ab8e0fb4f052e1d95ab6334e192c1R949
https://github.com/ruby/ruby/commit/cdc7602379c9d911983db2c044d69ac417869266#diff-8c2ab8e0fb4f052e1d95ab6334e192c1R949

#2 - 08/17/2018 09:00 AM - naruse (Yui NARUSE)

What is the ideal behavior you think? Just below?

diff --git a/lib/net/http/response.rb b/lib/net/http/response.rb
index 66132985d9..7c744d02f4 100644

-—- a/lib/net/http/response.rb

+++ b/lib/net/http/response.rb

@@ -290,7 +290,7 @@ def read_body_0 (dest)

clen = content_length()
if clen
= @socket.read clen, dest, true # ignore EOF
+ @socket.read clen, dest
return
end
clen = range_length ()

#3 - 09/20/2018 10:40 PM - joshc (Josh C)

If @socket.read clen, dest reads fully clen bytes then that seems ok. But if it can read fewer than clen bytes, then we should keep reading until we
read clen bytes or reach EOF.

#4 - 01/22/2019 11:37 PM - joshc (Josh C)
| submitted a PR against trunk: https:/github.com/ruby/ruby/pull/2074

#5 - 01/29/2019 01:57 PM - naruse (Yui NARUSE)
- Backport changed from 2.3: UNKNOWN, 2.4: UNKNOWN, 2.5: UNKNOWN to 2.3: DONTNEED, 2.4: DONTNEED, 2.5: DONTNEED

- Target version set to 2.7

| checked the code again and | noticed | wrote a code which depends current behavior before.
It is to resume with the partially downloaded result.

| consider something like this code with a option or changing the behavior with migration period...

#6 - 02/11/2019 06:32 PM - joshc (Josh C)

It is to resume with the partially downloaded result.

Doesn't Net::HTTPResponse#read_body raise if called more than once? How can the caller resume?

#7 - 02/12/2019 05:03 AM - naruse (Yui NARUSE)

joshc (Josh C) wrote:

It is to resume with the partially downloaded result.
Doesn't Net::HTTPResponse#read_body raise if called more than once? How can the caller resume?

Save first response body, set range HTTP Header and concat the 2nd response body.

#8 - 08/08/2019 11:18 PM - joshc (Josh C)

When a range is requested, the content-length of the response is the number of bytes in the partial response, so | would still expect an exception to
be raised if the partial response is truncated:

$ curl -s -v -r 0-100 -O https://cache.ruby-lang.org/pub/ruby/2.6/ruby-2.6.3.tar.gz
* Trying 151.101.65.178...

GET /pub/ruby/2.6/ruby-2.6.3.tar.gz HTTP/2
Host: cache.ruby-lang.org

Range: bytes=0-100

User—-Agent: curl/7.54.0

Accept: */*

vV V.V V V V .

< content-type: application/x-tar

11/18/2019 3/5

https://github.com/ruby/ruby/pull/2074

server: AmazonS3

accept-ranges: bytes

age: 1533346

content-range: bytes 0-100/16784748
accept-ranges: bytes

date: Thu, 08 Aug 2019 23:12:49 GMT
via: 1.1 varnish

x-served-by: cache-seal040-SEA
x—cache: HIT

x—-cache-hits: 0

x—timer: S1565305970.902169,VS0,VEOD
content-length: 101

~ AN AN AN AN AN AN ANANANANANANA

[101 bytes data]

#9 - 08/12/2019 09:13 PM - joshc (Josh C)
naruse (Yui NARUSE) wrote:

joshc (Josh C) wrote:

It is to resume with the partially downloaded result.
Doesn't Net::HTTPResponse#read_body raise if called more than once? How can the caller resume?
Save first response body, set range HTTP Header and concat the 2nd response body.
If you save the first response body, and make a new request with Range: bytes=X-Y, then the Content-Length header in the second response should

specify the number of bytes to expect, or the Content-Length header should be omitted in the case of chunked encoding. For example, given:

require 'net/http'

require 'uri'

require 'openssl'
uri = URI ("http://cache.ruby-lang.org/pub/ruby/2.6/ruby-2.6.3.tar.gz")

http = Net::HTTP.new(uri.host, uri.port)
#http.set_debug_output ($stderr)

http.start
begin
pos = 0
req = Net::HTTP::Get.new (uri.path)
req['Accept'] = '*/*!
req['Range'] = "bytes=#{pos}-9"

http.request (req) do |response]|
clen = response]['Content-Length'].to_1i
puts "Content-Length #{clen}"
puts "Content-Range #{response['Content-Range']}"
pos += clen
end

req = Net::HTTP::Get.new(uri.path)
req['Accept'] = '*/*!
req['Range'] = "bytes=#{pos}-#{pos+9}"
http.request (req) do |response]|
clen = response(['Content-Length'].to_1i
puts "Content-Length #{clen}"
puts "Content-Range #{response['Content-Range']}"
pos += clen
end
puts "Downloaded #{pos} bytes"
ensure
http.finish
end

Produces:
$ ruby range.rb
Content-Length 10

Content-Range bytes 0-9/16784748
Content-Length 10

11/18/2019 4/5

Content-Range bytes 10-19/16784748
Downloaded 20 bytes

In other words, if the Content-Length is specified, it should always specify the number of bytes to read (or drain) from the socket.
https://tools.ietf.org/html/rfc7230#section-3.4 specifically says:

A client that receives an incomplete response message, which can
occur when a connection is closed prematurely or when decoding a
supposedly chunked transfer coding fails, MUST record the message as
incomplete.

A message that uses a valid Content-Length is incomplete
if the size of the message body received (in octets) is less than the
value given by Content-Length.

So it should never be ok to silently ignore EOF.

11/18/2019 5/5

https://tools.ietf.org/html/rfc7230#section-3.4
http://www.tcpdf.org

