Ruby master - Feature #16341

Proposal: Set#to_proc and Hash#to_proc
11/11/2019 03:02 PM - Nondv (Dmitry Non)

Status: Open
Priority: Normal
Assignee:

Target version:

Description

class Set
def to_proc
-> (x) { include?(x) } # or method(:include?) .to_proc
end
end

Usage:
require 'set'

banned_numbers = Set[0, 5, 7, 9]
(1..10) .reject (¢banned_numbers) # ===> [1, 2, 3, 4, 6, 8, 10]

UPD
also for hash:
class Hash

def to_proc
> (key) { selflkey] }

end
end
dogs = ['Lucky', 'Tramp', 'Lady']
favourite_food = { 'Lucky' => 'salmon', 'Tramp' => 'pasta', 'Lady' => 'pasta' }

food_to_order = dogs.map(&favourite_food)

History

#1 - 11/11/2019 03:05 PM - Nondv (Dmitry Non)
- Backport deleted (2.5: UNKNOWN, 2.6: UNKNOWN)

- Tracker changed from Bug to Feature
#2 - 11/11/2019 03:08 PM - zverok (Victor Shepelev)
Since 2.5, Set implements #===, so you can just:

(1..10) .grep_v (banned_numbers)
=> [1, 2, 3, 4, 6, 8, 10]

which is pretty clear and probably more effective than proc conversion.

#3 - 11/11/2019 03:18 PM - Nondv (Dmitry Non)

Well, to_proc allows to send objects as blocks which can be quite useful not just in case of select/reject. Also, probably, those two are used more
often than grep/grep_v.

Another example from the top of my head is count:

dogs = Set[:labrador, :husky, :bullterrier, :corgil]
pets = [:parrot, :labrador, :goldfish, :husky, :labrador, :turtle]
pets.count (&:dogs) # ===> 3

#4 - 11/11/2019 03:26 PM - zverok (Victor Shepelev)

01/25/2021 1/3

Fair enough. ...well, you still can

pets.count (&dogs. :include?)

until the core team haven't reverted it :))))

(Which, for me, is more clear than value-objects-suddenly-becoming-procs, but apparently it is only me)
#5 - 11/11/2019 03:37 PM - Nondv (Dmitry Non)

Well, to be fair, this change is just nice-to-have sugar. | don't expect it to become a thing.

| guess for now the best way to do that is:

pets.count { |x| dogs.include? (x) }

or

pets.count (&dogs.method (:include?))

They both are "more clear than value-object-suddenly-becoming-procs". But having implicit conversion would be just a nice feature to make code
more compact and expressive (MHO).

Clojure treats sets as functions, btw:

(def dogs #{:labrador :husky :bullterrier :corgi})

(count (filter dogs [:parrot :labrador :goldfish :husky :labrador :turtlel))

#6 - 11/11/2019 11:43 PM - shevegen (Robert A. Heiler)

this change is just nice-to-have sugar. | don't expect it to
become a thing.

The ruby core team often points out that having good use cases may
help a proposal; and of course avoiding other problems such as
backwards-incompatibility or such.

Your initial comment is quite sparse, so zverok sort of got you to
explain more lateron. ;)

| am not really using ruby in a functional-centric manner nor do |
know clojure (aside from superficial glances), but to me personally

I am not completely sure if the use case has been explained. Unless
it was only syntactic sugar of course.

#7 - 11/12/2019 06:58 PM - Nondv (Dmitry Non)

This is a syntactic sugar. Using & + to_proc in this case is the same (not technically, but algorithmically, | guess) as providing an explicit block
something.some_method { |x|] some_set.include?(x) }

| don't find it crucial in any way and, to be honest, | don't really use sets that much (I prefer using hashes directly). But this feature could make some
code a tiny bit easier to read from English language perspective (I think)

#8 - 11/12/2019 07:05 PM - Nondv (Dmitry Non)
Speaking of hashes, they could implement implicit proc conversion as well:

class Hash
def to_proc

> (key) { selflkey] }
end
end
dogs = ['Lucky', 'Tramp', 'Lady']
favourite_food = { 'Lucky' => 'salmon', 'Tramp' => 'pasta', 'Lady' => 'pasta' }

food_to_order = dogs.map (&favourite_food)

#9 - 11/12/2019 07:09 PM - Nondv (Dmitry Non)

The main problem is that implicit conversion can be confusing, especially, if it's not obvious what the resulting proc is going to do.

However, | think that hashes are being used mainly for making key-value pairs and accessing them and sets are being used for checking if something
is included.

01/25/2021 2/3

So usage of :[] and :include? seems appropriate and relatively straight-forward to me.

Of course, depending on the context. With map/reduce/count it does make sense indeed but maybe there're cases when it can make things hard to
understand

#10 - 11/12/2019 07:10 PM - Nondv (Dmitry Non)
- Subject changed from Proposal: Set#to_proc to Proposal: Set#to_proc and Hash#to_proc

#11 - 11/12/2019 07:11 PM - Nondv (Dmitry Non)

- Description updated
#12 - 11/12/2019 07:44 PM - shan (Shannon Skipper)
Nondv (Dmitry Non) wrote:
Speaking of hashes, they could implement implicit proc conversion as well:

class Hash
def to_proc

->(key) { selflkey] }
end
end
dogs = ['Lucky', 'Tramp', 'Lady']
favourite_food = { 'Lucky' => 'salmon', 'Tramp' => 'pasta', 'Lady' => 'pasta' }

food_to_order = dogs.map(&favourite_food)

This already works! Hash#to_proc was added in Ruby 2.3. ruby-core:11653

| like the idea of Set#to_proc.

#13 - 11/12/2019 08:12 PM - Nondv (Dmitry Non)

shan (Shannon Skipper) wrote:

This already works!

| can't believe I'm so oblivious :D

01/25/2021 3/3

https://bugs.ruby-lang.org/issues/11653
http://www.tcpdf.org

