Ruby master - Feature #8809

Process.clock_getres
08/22/2013 11:33 PM - akr (Akira Tanaka)

Status: Closed
Priority: Normal
Assignee:

Target version:

Description
How about Process.clock_getres method?

POSIX defines clock_getres function to provide resolution information
of clocks.

| made a pacth to invoke clock_getres function.

Process.clock_getres(Process::CLOCK_MONOTONIC) #=> 1.0e-09
Process.clock_getres(Process::CLOCK_MONOTONIC_COARSE) #=> 0.00400025

The result means that the resolution of CLOCK_MONOTONIC is 1ns and
the resolution of CLOCK_MONOTONIC_COARSE is 4.00025ms.

Process.clock_getres has optional unit argument as Process.clock_gettime.

Process.clock_getres(Process::CLOCK_MONOTONIC, :nanosecond) #=> 1
Process.clock_getres(Process::CLOCK_MONOTONIC_COARSE, :nanosecond) #=> 4000250

It supports emulated clocks as well.

Process.clock_getres(:SUS_GETTIMEOFDAY_BASED_CLOCK_REALTIME) #=> 1.0000000000000002e-06
Process.clock_getres(:SUS_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) #=> 1.0000000000000002e-06

The unit argument can be :hertz, which means the reciprocal of the second.
Process.clock_getres(:SUS_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) #=> 1000000.0

Note that

Process.clock_getres(:POSIX_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) is the clock ticks per second (CLK_TCK)
and

Process.clock_getres(:ISO_C_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) is CLOCK_PER_SEC.

| wanted to access them easily to investigate emulated clock behaviors on

various OSes.

Any comments?

Associated revisions

Revision 23da5a78 - 08/31/2013 01:21 PM - akr (Akira Tanaka)

e process.c (rb_clock_getres): New method.
(timetick2dblnum_reciprocal): New function.

e configure.in: Check clock_getres.
[ruby-core:56780] [Feature #8809] accepted at

DevelopersMeeting20130831Japan
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@42744 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

10/19/2019 1/6

https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan

Revision 42744 - 08/31/2013 01:21 PM - akr (Akira Tanaka)

e process.c (rb_clock_getres): New method.
(timetick2dblnum_reciprocal): New function.

e configure.in: Check clock_getres.

[ruby-core:56780] [Feature #8809] accepted at
DevelopersMeeting20130831Japan

https: .ruby-lang.org/proj r wiki/DevelopersMeeting201 1 n

Revision 42744 - 08/31/2013 01:21 PM - akr (Akira Tanaka)

e process.c (rb_clock_getres): New method.
(timetick2dblnum_reciprocal): New function.

e configure.in: Check clock_getres.
[ruby-core:56780] [Feature #8809] accepted at

DevelopersMeeting20130831Japan
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan

Revision 42744 - 08/31/2013 01:21 PM - akr (Akira Tanaka)

e process.c (rb_clock_getres): New method.
(timetick2dblnum_reciprocal): New function.

¢ configure.in: Check clock_getres.
[ruby-core:56780] [Feature #8809] accepted at

DevelopersMeeting20130831Japan
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan

Revision 42744 - 08/31/2013 01:21 PM - akr (Akira Tanaka)

e process.c (rb_clock_getres): New method.
(timetick2dblnum_reciprocal): New function.

e configure.in: Check clock_getres.
[ruby-core:56780] [Feature #8809] accepted at

DevelopersMeeting20130831Japan
https: .ruby-lang.org/proj r wiki/DevelopersMeeting201 1 n

Revision 42744 - 08/31/2013 01:21 PM - akr (Akira Tanaka)

e process.c (rb_clock_getres): New method.
(timetick2dblnum_reciprocal): New function.

e configure.in: Check clock_getres.
[ruby-core:56780] [Feature #8809] accepted at

DevelopersMeeting20130831Japan
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan

10/19/2019

2/6

https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan

Revision 42744 - 08/31/2013 01:21 PM - akr (Akira Tanaka)

e process.c (rb_clock_getres): New method.
(timetick2dblnum_reciprocal): New function.

e configure.in: Check clock_getres.
[ruby-core:56780] [Feature #8809] accepted at

DevelopersMeeting20130831Japan
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan

History

#1 - 08/23/2013 01:23 AM - david_macmahon (David MacMahon)
On Aug 22, 2013, at 7:33 AM, akr (Akira Tanaka) wrote:

| made a pacth to invoke clock_getres function.

Thanks for making a patch! It makes the discussion much less abstract (more real?). | think | will try to follow your example in the future.

Process.clock_getres(Process::CLOCK_MONOTONIC) #=> 1.0e-09
Process.clock_getres(Process::CLOCK_MONOTONIC_COARSE) #=> 0.00400025

The result means that the resolution of CLOCK_MONOTONIC is 1ns and
the resolution of CLOCK_MONOTONIC_COARSE is 4.00025ms.

Did you consider having these methods return Rational rather than Float?
Process.clock_getres has optional unit argument as Process.clock_gettime.

Process.clock_getres(Process::CLOCK_MONOTONIC, :nanosecond) #=> 1
Process.clock_getres(Process::CLOCK_MONOTONIC_COARSE, :nanosecond) #=> 4000250

It supports emulated clocks as well.

Process.clock_getres(:SUS_GETTIMEOFDAY_BASED_CLOCK_REALTIME) #=> 1.0000000000000002e-06
Process.clock_getres(:SUS_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) #=> 1.0000000000000002¢e-06

The unit argument can be :hertz, which means the reciprocal of the second.

Process.clock_getres(:SUS_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) #=> 1000000.0

How would you feel about supporting :ns and :hz as equivalents for :nanosecond and :hertz?
Note that
Process.clock_getres(:POSIX_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) is the clock ticks per second (CLK_TCK) and
Process.clock_getres(:ISO_C_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) is CLOCK_PER_SEC.

| wanted to access them easily to investigate emulated clock behaviors on
various OSes.

Those are some long symbols! Are these intended only for experimental/investigative use?

Any comments?

| appreciate having access to POSIX functionality, so I'm all for this idea!

Thanks,
Dave

#2 - 08/23/2013 07:53 AM - akr (Akira Tanaka)
2013/8/23 David MacMahon davidm@astro.berkeley.edu:

Process.clock_getres(Process::CLOCK_MONOTONIC) #=> 1.0e-09
Process.clock_getres(Process::CLOCK_MONOTONIC_COARSE) #=> 0.00400025

10/19/2019 3/6

https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan
mailto:davidm@astro.berkeley.edu

The result means that the resolution of CLOCK_MONOTONIC is 1ns and
the resolution of CLOCK_MONOTONIC_COARSE is 4.00025ms.

Did you consider having these methods return Rational rather than Float?
Process.clock_getres can return rational if it supports

‘rational_second as a unit.

The current default of unit is :float_second and
| think float is good enough.

Process.clock_getres(:SUS_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) #=> 1000000.0
How would you feel about supporting :ns and :hz as equivalents for :nanosecond and :hertz?
It is difficult to support :microsecond in that style
because the Sl prefix, Greek m, is not representable in ASCII.
Someone may argue :hz should be :Hz.
| feel float_s is bit curious.
So it is difficult to adopt :ns style as canonical style of unit.
| think several aliases are possible but
I'd like to concentrate to main feature.
The discussion for what aliases should be added or not can be diverge.
Note that
Process.clock_getres(:POSIX_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) is the clock ticks per second (CLK_TCK) and
Process.clock_getres(:1ISO_C_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) is CLOCK_PER_SEC.

| wanted to access them easily to investigate emulated clock behaviors on
various OSes.

Those are some long symbols! Are these intended only for experimental/investigative use?

| choose the long symbols that is longer than Process::CLOCK_PROCESS_CPUTIME_ID.
Basically users should use Process::CLOCK_PROCESS_CPUTIME_ID if no reason.

Tanaka Akira

#3 - 08/23/2013 08:23 AM - david_macmahon (David MacMahon)
On Aug 22, 2013, at 3:37 PM, Tanaka Akira wrote:

Process.clock_getres can return rational if it supports
‘rational_second as a unit.

The current default of unit is :float_second and

| think float is good enough.

Agreed. Plus, if someone really wants, they can request nanosecond precision, which is all that clock_getres supports (at least on Linux).

Process.clock_getres(:SUS_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) #=> 1000000.0

How would you feel about supporting :ns and :hz as equivalents for :nanosecond and :hertz?

It is difficult to support :microsecond in that style
because the Sl prefix, Greek m, is not representable in ASCII.

| know it's not Sl, but | often use ASCII "u" for Greek m ("1"), so :microsecond would be aliased by :us.

Someone may argue :hz should be :Hz.

10/19/2019 46

No doubt! :-)

| feel :float_s is bit curious.

How about separating the type and the resolution into two different parameters?
Process.clock_getres (Process: :CLOCK_MONOTONIC, :float, :second)
...0r...
Process.clock_getres (Process: :CLOCK_MONOTONIC, Float, :second)
So it is difficult to adopt :ns style as canonical style of unit.
| think several aliases are possible but
I'd like to concentrate to main feature.
The discussion for what aliases should be added or not can be diverge.
Agreed. | think the main feature is great!
Note that
Process.clock_getres(:POSIX_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) is the clock ticks per second (CLK_TCK)
and
Process.clock_getres(:1ISO_C_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) is CLOCK_PER_SEC.

| wanted to access them easily to investigate emulated clock behaviors on
various OSes.

Those are some long symbols! Are these intended only for experimental/investigative use?

| choose the long symbols that is longer than Process::CLOCK_PROCESS_CPUTIME_ID.
Basically users should use Process::CLOCK_PROCESS_CPUTIME_ID if no reason.
Sounds good.
Dave
#4 - 08/24/2013 09:23 AM - akr (Akira Tanaka)
david_macmahon (David MacMahon) wrote:

| know it's not Sl, but | often use ASCII "u" for Greek m ("U"), so :microsecond would be aliased by :us.

It may be possible.

| found ISO 2955.
ISO 2955: Information processing - Representation units in Systems with limited Character sets

| feel :float_s is bit curious.

How about separating the type and the resolution into two different parameters?
Process.clock_getres (Process: :CLOCK_MONOTONIC, :float, :second)
...Or...

Process.clock_getres (Process: :CLOCK_MONOTONIC, Float, :second)

| think most useful combinations are follows.

e float second
e integer nanosecond (clock_gettime/clock_getres native format)

The current design makes us possible to specify
former as no unit argument and
later as :nanosecond.

Your design force us longer description for integer nanosecond.

10/19/2019 5/6

#5 - 08/24/2013 09:24 AM - akr (Akira Tanaka)
- File clock_getres-2.patch added

| updated the patch.

#6 - 08/24/2013 10:41 AM - akr (Akira Tanaka)
- File clock_getres-3.patch added

| updated the patch again.

#7 - 08/31/2013 10:21 PM - akr (Akira Tanaka)
- Status changed from Open to Closed
- % Done changed from 0 to 100

This issue was solved with changeset r42744.
Akira, thank you for reporting this issue.

Your contribution to Ruby is greatly appreciated.
May Ruby be with you.

e process.c (rb_clock_getres): New method.
(timetick2dblnum_reciprocal): New function.

e configure.in: Check clock_getres.
[ruby-core:56780] [Feature #8809] accepted at

DevelopersMeeting20130831Japan
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan

Files

clock_getres.patch 4.39 KB 08/22/2013 akr (Akira Tanaka)
clock_getres-2.patch 6.06 KB 08/24/2013 akr (Akira Tanaka)
clock_getres-3.patch 6 KB 08/24/2013 akr (Akira Tanaka)

10/19/2019

6/6

https://bugs.ruby-lang.org/issues/8809
https://bugs.ruby-lang.org/projects/ruby/wiki/DevelopersMeeting20130831Japan
http://www.tcpdf.org

