
Introducing Restricted Generational
Garbage Collection into CRuby/MRI

Generational Garbage Collection under the Sunshine

2013/April

Koichi Sasada

Heroku, Inc.

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Summary

• RGenGC: Restricted Generational GC
– New GC algorithm allow mixing “Write-barrier

protected objects” and “WB unprotected objects”

– No (mostly) compatibility issue with C-exts

• Inserting WBs gradually
– We can concentrate WB insertion efforts for major

objects and major methods

– Now, Array and String objects are WB protected
• Array and String objects are very popular in Ruby

• Array objects using RARRAY_PTR() change to WB
unprotected objects (called as Shady objects), so existing
codes work well

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Agenda

• Background

– Generational GC

– Ruby’s GC strategy

• Proposal: RGenGC

– Separating into sunny and shady objects

– Shady objects at marking

– Shade operation

• Implementation

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Background
Current CRuby’s GC

• Mark & Sweep

– Conservative

– Lazy sweep

– Bitmap marking

– Non-recursive marking

• C-friendly strategy

– Don’t need magical macros in C source codes

– Many many C-extensions under this strategy

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Background
Mark & Sweep

1. Mark reachable
objects from root
objects

2. Sweep unmarked
objects (collection
and de-allocation)

Root objects

marked

marked

marked

free

marked

marked

traverse

traverse traverse

traverse traverse

free

free

Collect
unreachable

objects

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Background
Generational GC (GenGC)

• Weak generational hypothesis: Most objects die
young → Concentrating reclamation effort on the
youngest objects

• Separate young generation and old generation
– Create objects as young generation

– Promote to old generation after surviving nth GC

– In CRuby, n == 1 (after 1 GC, objects become old)

• Usually, GC on young space (minor GC)

• GC on both spaces if no memory (major/full GC)

2013/4/28

"RGenGC for Ruby" by Koichi Sasada @
Heroku, Inc.

Background
Generational GC (GenGC)

• Minor GC and Major GC can use different GC
algorithm

– Popular combination

 → Minor GC: Copy GC, Major GC: M&S

– On the CRuby’s: both Minor&Major GCs should
be M&S because CRuby’s GC (and existing codes)
based on conservative M&S algorithm

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Background: GenGC
[Minor M&S GC]

• Mark reachable objects
from root objects.
– Mark and promote to old gen

– Stop traversing after old
objects

→ Reduce mark overhead

• Sweep not (marked or old)
objects

• Can’t collect Some
unreachable objects

•

Root objects

new

new new

new/
free

new new

traverse

traverse traverse

traverse traverse

new/
free

old/
free

Don’t collect old object
even if it is unreachable.

collect

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

1st MinorGC

Background: GenGC
[Minor M&S GC]

• Mark reachable objects
from root objects.
– Mark and promote to old gen

– Stop traversing after old
objects

→ Reduce mark overhead

• Sweep not (marked or old)
objects

• Can’t collect Some
unreachable objects

•

Root objects

old

old old

new/
free

old old

traverse

ignore ignore

ignore ignore

new/
free

old/
free

Don’t collect old object
even if it is unreachable.

collect

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

2nd MinorGC

Background: GenGC
[Major M&S GC]

• Normal M&S

• Mark reachable objects
from root objects
– Mark and promote to old gen

• Sweep unmarked objects

• Sweep all unreachable
(unused) objects

Root objects

new

old new

new/
free

old old

traverse

traverse traverse

traverse traverse

new/
free

old/
free

collect

collect

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Background: GenGC
Remember Set (RSet)

• Old objects refer young
objects

→ Minor GC causes

 marking leak!!

– Because minor GC ignores
referenced objects by old
objects

old

old old

new

Can’t mark new object!
→ Sweeping living object! (BUG)

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Background: GenGC
Remember Set (RSet)

• Add an old object into
Remember set (RSet) if an
old object refer new objects

– At minor GC, mark all
remembered objects

• To detect [old→new] type
references, insert “Write-
barrier”

– “Generating references” ==
“Write”

old

old old

new

Remember
set (RSet)

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Background: GenGC
[Major M&S GC] w/ RSet

• Mark reachable objects
from root objects

– Remembered objects
are also root objects

• Stop traversing after old
objects

• Sweep not (marked or
old) objects

 Root objects

new

old

new

old old

traverse

traverse

traverse

ignore ignore

old

Remember
set (RSet)

collect

new/
free

new/
free

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Problem
Write-barrier (WB) and CRuby

• To introduce generational garbage collector, WBs are
necessary to detect [old→new] type reference

• Write-barrier (WB) example in Ruby world
– (Ruby) old0[0] = new0 # [old0 → new0]
– (Ruby) old1.foo = new0 # [old1 → new1]

• Write-barriers miss causes terrible failure
– WB miss
→ Remember-set registration miss
→ (minor GC) marking-miss → Terrible GC BUG!!

• All of C-extensions need perfect Write-barriers
– Manipulate Ruby objects in C language (in C-ext)
– C-level WBs are needed

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Problem
Inserting WBs into C-extensions (C-ext)

• Problem: Compatibility

– Example (C) RARRAY_PTR(old0)[0] = new1

– There are Many Many C-exts’ sources like that

• CRuby core codes uses C-APIs, but we can
rewrite all of source code (with terrible
debugging!!)

• We can’t rewrite all of C-exts which are written
by 3rd party

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Problem
Inserting WBs into C-extensions (C-ext)

“CHOSE!!”

[Give up GenGC]

or

[GenGC with re-writing all of C-extensions
without C-exts compatibility]

2013/4/28

"RGenGC for Ruby" by Koichi Sasada @
Heroku, Inc.

Current
Choice

Related work on Ruby’s GenGC

• Kiyama, et. al. GenGC for CRuby

– Straightforward implementation for Ruby 1.6

– Need WBs in correct places

– High development cost

– Can’t keep compatibility → Drop all C-exts

• Nari, et.al longlife GC for CRuby

– Introduce GenGC only for Node object

– No compatibility issues because C-exts don’t use node

– Now CRuby doesn’t use many number of node objects

– High development cost (to guarantee WBs)

 2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Related work on Ruby’s GenGC

• Make interpreter with other language
infrastructures which have GC

– JRuby, IronRuby

– Can’t keep compatibility

• Separate core heap and CRuby C-ext heap

– Rubinius

– High development cost

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC: Challenge

• How to treat Write-barriers?
– In Ruby-core, we can chnage w/ huge effort

– We can’t touch existing C-exts ← Problem

• Several approaches
– Separate heaps into the WB world and non-WB

world
• Rubinius way

• Need huge development effort

– WB auto-insertion
• Modify C-compiler

• Need huge development effort
2013/4/28

"RGenGC for Ruby" by Koichi Sasada @
Heroku, Inc.

Challenge to introduce GenGC
Goal

• Create GC algorithm permits WB protected
objects AND WB unsafe object in the same
heap

RGenGC: Restricted Generational
Garbage Collection

Generational Garbage Collection under the Sunshine

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC
Key Idea

• Separate objects into two types
– Sunny Object: WB Protected
– Shady Object: WB Unprotected

• Decide type at creation time
– A class don’t care about WB → Shady obj
– A class care about WB → Sunny obj
– Currently, most of classes DOESN’T care

about WB, so most of objects are created
as Shady objects.

• Sunny objects can change to Shady
objects
– “Shade” operation
– Example

• ptr = RARRAY_PTR(ary)
• In this case, we can’t insert WB for ptr

operation, so VM shade “ary”

Sunny
obj

Shady
obj

VM

Shade

Create

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Shady: doubtful,
questionable, ...

RGenGC
Key Idea

• Mark “Shady objects” correctly

– At Marking

1. Don’t promote shady objects to old objects

2. Remember shady objects pointed from old
objects

– At Shade operation for old sunny objects

1. Demote objects

2. Remember shaded shady objects

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC
[Minor M&S GC w/Shady object]

• Mark reachable objects
from root objects
– Mark shady objects, and

don’t promote to old
gen objects

– If shady objects pointed
from old objects, then
remember shady objects
by RSet.

→ Mark shady objects
every minor GC!!

 Root objects

new

new

old

new
new

traverse

traverse

traverse traverse

old

Remember
set (RSet)

collect

new/
free

new/
free

traverse

new

traverse

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

new

traverse

1st MinorGC

mark and
remember

remember

RGenGC
[Minor M&S GC w/Shady object]

• Mark reachable objects
from root objects
– Mark shady objects, and

don’t promote to old
gen objects

– If shady objects pointed
from old objects, then
remember shady objects
by RSet.

→ Mark shady objects
every minor GC!!

 Root objects

old

old

old

new
old

traverse

ignore

ignore
ignore

old

Remember
set (RSet)

collect

new/
free

new/
free

traverse

new

traverse

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

new

traverse

traverse

2nd MinorGC

RGenGC
[Shade operation]

• Old sunny objects → Shade
objects

– Example: RARRAY_PTR(ary)

– (1) Demote object (old → new)

– (2) Register it to Remember Set

old

Shady old

new

Remember
set (RSet)

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC
Timing chart

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Ruby Mark Sweep

Stop the (Ruby)
World

Sweep Sweep Sweep Sweep

2.0.0 GC (M&S w/lazy sweep)

w/RGenGC (Minor GC)

Ruby
Mark

Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

• Shorter mark time (good)
• Same sweep time (not good)
• (little) Longer execution time b/c WB (bad)

RGenGC
Number of marking objects

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

2.0.0 GC (M&S w/lazy sweep)

Living object counts Freed object counts

w/RGenGC (Minor GC)

Living object counts Freed object counts

of old
object
(#old)

of new
object (#new)

of freed
but remembered

objects

(a) (b)

(a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

(c)

RGenGC
Number of marking objects

Marking space Number of unused,
uncollected objs

Sweeping
space

Traditional GenGC #new + (a) (a) #new

RGenGC #new + (a) + (b) + (c) (a) + (b) Full heap

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

w/RGenGC (Minor GC)

Living object counts Freed object counts

of old
object
(#old)

of new
object (#new)

of freed
but remembered

objects

(a) (b)

(c) (a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

RGenGC
Discussion: Pros. and Cons.

• Pros.
– Allow WB unprotected objects (shady objects)

• 100% compatible w/ existing extensions (and standard classes/methods)

– Inserting WBs step by step, and increase performance gradually
• We don’t need to insert all WBs into interpreter core at a time

– At first, we can try from Array and String, the most popular classes.

• We can concentrate into popular (frequent) classes/methods.
• We can ignore minor classes/methods.

– Simple algorithm, easy to develop (done!)

• Cons.
– Increasing “unused, but not corrected objects until full/major GC

• Remembered objects (caused by well known GenGC algorithm)
• Remembered shady objects (caused by RGenGC algorithm)

– WB insertion (potential) bugs
• RGenGC permit shady objects, but sunny objects need correct/perfect WBs. But inserting

correct/perfect WBs is difficult.
• This issue is out of scope. We have another idea against this problem (out of scope).

– Can’t reduce Sweeping time
• But many (and easy) well-known techniques to reduce sweeping time (out of scope).

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC
Implementation

• Introduce two flasgs into RBasic
– FL_KEEP_WB: WB protected or not protected

• 0 → unprotected → Shady object
• 1 → protected → Sunny object
• Usage: NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | FL_KEEP_WB);

– FL_OLDGEN: Young gen or Old gen?
• 0 → Young gen
• 1 → Old gen
• Don’t need to touch by user program

• Remember set is represented by bitmaps
– Same as marking bitmap
– heap_slot::rememberset_bits
– Traverse all object area with this bitmap at first

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC
Implementation: WB operation API

• OBJ_WB(a, b)

– Declare “a” refers “b”

– OBJ_WB(a, b) returns “a”

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC
Implementation: WB operation API

• T_ARRAY
– RARRAY_PTR(ary) causes shade operation

• Can’t get RGenGC performance improvement
• But works well 

• Instead of RARRAY_PTR(ary), use alternatives
– RARRAY_AREF(ary, n) → RARRAY_PTR(ary)[n]
– RARRAY_ASET(ary, n, obj) → RARRAY_PTR(ary)[n] =

obj w/ Write-barrier
– RARRAY_PTR_USE(ary, ptrname, {...block...})

• Only in block, pointers can be accessed by `ptrname’ variable
(VALUE*).

• Programmers need to insert collect WBs (miss causes BUG).

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC
Incompatibility

• Make RBasic::klass “const”

– Need WBs for a reference from an object to a
klass.

– Only few cases (zero-clear and restore it)

– Provide alternative APIs

• Now, RBASIC_SET_CLASS(obj, klass) and
RBASIC_CLEAR_CLASS(obj) is added. But they should be
internal APIs (removed soon).

• rb_??? style API should be provided.

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC
Future work

• Minor GC / Major GC timing

• Optimize remember set representation

• Inserting WBs w/ application profiling

– Profiling system

– Benchmark programs

• Detection system for WBs insertion miss

– RGENGC_CHECK_MODE (2, in gc.c) is not enough

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC
Performance evaluation

• Ideal benchmark for RGenGC

– Create many old objects at first

– Many new objects (many minor GC, no major GC)

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

RGenGC
Performance evaluation

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

0

100000000

200000000

300000000

400000000

500000000

600000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ex
e

cu
ti

o
n

 t
im

e
 b

y
R

D
TS

C

GC count

mark (RGENGC)

sweep (RGENGC)

mark

sweep

• Shorter mark time (good)
• Same sweep time (not good)

RGenGC
Performance evaluation

• Not yet for other application data

• Please wait 

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Summary

• RGenGC: Restricted Generational GC
– New GC algorithm allow mixing “Write-barrier

protected objects” and “WB unprotected objects”

– No (mostly) compatibility issue with C-exts

• Inserting WBs gradually
– We can concentrate WB insertion efforts for major

objects and major methods

– Now, Array and String objects are WB protected
• Array and String objects are very popular in Ruby

• Array objects using RARRAY_PTR() change to WB
unprotected objects (called as Shady objects), so existing
codes work well

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

Ask and Question from Ko1

• Please check my proposed algorithm

• Do not touch any program for RGenGC (WBs, etc)

– APIs can be changed

• Please tell me any related works you know

– I have surveyed about this GC algorithm, but I can’t
find that (I guess most of interpreters have perfect
WBs)

– I want to write a paper for DLS 2013 (Dynamic
Language Symposium) 

2013/4/28

"RGenGC for Ruby" by Koichi Sasada @
Heroku, Inc.

Thank you

[Contact information]

Koichi Sasada

Heroku, Inc.

<ko1@heroku.com>

2013/4/28
"RGenGC for Ruby" by Koichi Sasada @

Heroku, Inc.

