Project

General

Profile

Actions

Bug #17037

closed

rounding of Rational#to_f

Added by akr (Akira Tanaka) over 4 years ago. Updated 12 months ago.

Status:
Closed
Assignee:
-
Target version:
-
[ruby-core:99239]

Description

I found a doubtful rounding behavior of Rational#to_f.

% ./ruby -ve '
a = 1r
e = Float::EPSILON.to_r
puts "e=#{e}"
n = 100
(0..n).each {|i|
  r = a + e * i / n
  f = r.to_f
  p [i, f, r]
}
'
ruby 2.8.0dev (2020-07-20T06:39:31Z master 935d0b3d05) [x86_64-linux]
e=1/4503599627370496
[0, 1.0, (1/1)]
[1, 1.0, (450359962737049601/450359962737049600)]
[2, 1.0, (225179981368524801/225179981368524800)]
[3, 1.0, (450359962737049603/450359962737049600)]
[4, 1.0, (112589990684262401/112589990684262400)]
[5, 1.0, (90071992547409921/90071992547409920)]
[6, 1.0, (225179981368524803/225179981368524800)]
[7, 1.0, (450359962737049607/450359962737049600)]
[8, 1.0, (56294995342131201/56294995342131200)]
[9, 1.0, (450359962737049609/450359962737049600)]
[10, 1.0, (45035996273704961/45035996273704960)]
[11, 1.0, (450359962737049611/450359962737049600)]
[12, 1.0, (112589990684262403/112589990684262400)]
[13, 1.0, (450359962737049613/450359962737049600)]
[14, 1.0, (225179981368524807/225179981368524800)]
[15, 1.0, (90071992547409923/90071992547409920)]
[16, 1.0, (28147497671065601/28147497671065600)]
[17, 1.0, (450359962737049617/450359962737049600)]
[18, 1.0, (225179981368524809/225179981368524800)]
[19, 1.0, (450359962737049619/450359962737049600)]
[20, 1.0, (22517998136852481/22517998136852480)]
[21, 1.0, (450359962737049621/450359962737049600)]
[22, 1.0, (225179981368524811/225179981368524800)]
[23, 1.0, (450359962737049623/450359962737049600)]
[24, 1.0, (56294995342131203/56294995342131200)]
[25, 1.0, (18014398509481985/18014398509481984)]
[26, 1.0, (225179981368524813/225179981368524800)]
[27, 1.0, (450359962737049627/450359962737049600)]
[28, 1.0, (112589990684262407/112589990684262400)]
[29, 1.0, (450359962737049629/450359962737049600)]
[30, 1.0, (45035996273704963/45035996273704960)]
[31, 1.0, (450359962737049631/450359962737049600)]
[32, 1.0, (14073748835532801/14073748835532800)]
[33, 1.0000000000000002, (450359962737049633/450359962737049600)]
[34, 1.0000000000000002, (225179981368524817/225179981368524800)]
[35, 1.0, (90071992547409927/90071992547409920)]
[36, 1.0000000000000002, (112589990684262409/112589990684262400)]
[37, 1.0000000000000002, (450359962737049637/450359962737049600)]
[38, 1.0000000000000002, (225179981368524819/225179981368524800)]
[39, 1.0000000000000002, (450359962737049639/450359962737049600)]
[40, 1.0, (11258999068426241/11258999068426240)]
[41, 1.0000000000000002, (450359962737049641/450359962737049600)]
[42, 1.0000000000000002, (225179981368524821/225179981368524800)]
[43, 1.0000000000000002, (450359962737049643/450359962737049600)]
[44, 1.0000000000000002, (112589990684262411/112589990684262400)]
[45, 1.0000000000000002, (90071992547409929/90071992547409920)]
[46, 1.0000000000000002, (225179981368524823/225179981368524800)]
[47, 1.0000000000000002, (450359962737049647/450359962737049600)]
[48, 1.0000000000000002, (28147497671065603/28147497671065600)]
[49, 1.0000000000000002, (450359962737049649/450359962737049600)]
[50, 1.0, (9007199254740993/9007199254740992)]
[51, 1.0000000000000002, (450359962737049651/450359962737049600)]
[52, 1.0000000000000002, (112589990684262413/112589990684262400)]
[53, 1.0000000000000002, (450359962737049653/450359962737049600)]
[54, 1.0000000000000002, (225179981368524827/225179981368524800)]
[55, 1.0000000000000002, (90071992547409931/90071992547409920)]
[56, 1.0000000000000002, (56294995342131207/56294995342131200)]
[57, 1.0000000000000002, (450359962737049657/450359962737049600)]
[58, 1.0000000000000002, (225179981368524829/225179981368524800)]
[59, 1.0000000000000002, (450359962737049659/450359962737049600)]
[60, 1.0000000000000002, (22517998136852483/22517998136852480)]
[61, 1.0000000000000002, (450359962737049661/450359962737049600)]
[62, 1.0000000000000002, (225179981368524831/225179981368524800)]
[63, 1.0000000000000002, (450359962737049663/450359962737049600)]
[64, 1.0000000000000002, (7036874417766401/7036874417766400)]
[65, 1.0000000000000002, (90071992547409933/90071992547409920)]
[66, 1.0000000000000002, (225179981368524833/225179981368524800)]
[67, 1.0000000000000002, (450359962737049667/450359962737049600)]
[68, 1.0000000000000002, (112589990684262417/112589990684262400)]
[69, 1.0000000000000002, (450359962737049669/450359962737049600)]
[70, 1.0000000000000002, (45035996273704967/45035996273704960)]
[71, 1.0000000000000002, (450359962737049671/450359962737049600)]
[72, 1.0000000000000002, (56294995342131209/56294995342131200)]
[73, 1.0000000000000002, (450359962737049673/450359962737049600)]
[74, 1.0000000000000002, (225179981368524837/225179981368524800)]
[75, 1.0000000000000002, (18014398509481987/18014398509481984)]
[76, 1.0000000000000002, (112589990684262419/112589990684262400)]
[77, 1.0000000000000002, (450359962737049677/450359962737049600)]
[78, 1.0000000000000002, (225179981368524839/225179981368524800)]
[79, 1.0000000000000002, (450359962737049679/450359962737049600)]
[80, 1.0000000000000002, (5629499534213121/5629499534213120)]
[81, 1.0000000000000002, (450359962737049681/450359962737049600)]
[82, 1.0000000000000002, (225179981368524841/225179981368524800)]
[83, 1.0000000000000002, (450359962737049683/450359962737049600)]
[84, 1.0000000000000002, (112589990684262421/112589990684262400)]
[85, 1.0000000000000002, (90071992547409937/90071992547409920)]
[86, 1.0000000000000002, (225179981368524843/225179981368524800)]
[87, 1.0000000000000002, (450359962737049687/450359962737049600)]
[88, 1.0000000000000002, (56294995342131211/56294995342131200)]
[89, 1.0000000000000002, (450359962737049689/450359962737049600)]
[90, 1.0000000000000002, (45035996273704969/45035996273704960)]
[91, 1.0000000000000002, (450359962737049691/450359962737049600)]
[92, 1.0000000000000002, (112589990684262423/112589990684262400)]
[93, 1.0000000000000002, (450359962737049693/450359962737049600)]
[94, 1.0000000000000002, (225179981368524847/225179981368524800)]
[95, 1.0000000000000002, (90071992547409939/90071992547409920)]
[96, 1.0000000000000002, (14073748835532803/14073748835532800)]
[97, 1.0000000000000002, (450359962737049697/450359962737049600)]
[98, 1.0000000000000002, (225179981368524849/225179981368524800)]
[99, 1.0000000000000002, (450359962737049699/450359962737049600)]
[100, 1.0000000000000002, (4503599627370497/4503599627370496)]

This sample program tries to convert rationals between
1.0 and 1.0 + Float::EPSILON to float.
Since there is no representable float values between them
(except 1.0 and 1.0 + Float::EPSILON),
I expect that
r.to_f returns 1.0 for r < X and
1.0 + Float::EPSILON for r > X
for some X.

But my expectation is not valid:

[34, 1.0000000000000002, (225179981368524817/225179981368524800)]
[35, 1.0, (90071992547409927/90071992547409920)]

I.e.

1 + Float::EPSILON.to_r * 34 / 100 < 1 + Float::EPSILON.to_r * 35 / 100

but

(1 + Float::EPSILON.to_r * 34 / 100).to_f > (1 + Float::EPSILON.to_r * 35 / 100).to_f

I guess Rational#to_f should round the rational value to a nearest representable float value.

Updated by akr (Akira Tanaka) about 4 years ago

Gauche scheme interpreter has same issue and Kawai-san (the author of Gauche) investigate it.

http://blog.practical-scheme.net/gauche/20200722-ratnum-flonum

Updated by JesseJohnson (Jesse Johnson) about 1 year ago

Test case:

  def test_rational_with_large_integer_components_to_f
    r = 450359962737049649/450359962737049600r
    assert_equal(1.0, r.to_f)
  end

The issue is that large integers, abs > 2 ** 53 - 1, are truncated when converting to double precision floating point and this affects which floating point value is closest after division. This can be fixed by using BigDecimal but I'm not sure that is an appropriate dependency for Rational.

Actions #3

Updated by nobu (Nobuyoshi Nakada) 12 months ago

  • Status changed from Open to Closed

Applied in changeset git|8e93bf8e1fbac73b677c333b19a8b55ae9daddc3.


[Bug #17037] Improve accuracy of division near precision limits

When dividing near the precision limit of double, use Bignum
division to get rid of rounding errors.

Actions

Also available in: Atom PDF

Like0
Like0Like0Like1